
Question Answering with Deep Learning

Alex Auvolat
alex.auvolat@ens.fr

Thomas Mesnard
thomas.mesnard@ens.fr

Étienne Simon
esimon@esimon.eu

February 29, 2016

Abstract

In this report, we describe our approach to the question answering
problem by first reducing it to a reading comprehension task. Our models
parse the question as well as a document likely to contain the answer we
are looking for and generate their predictions from both of them. We com-
bine common neural networks techniques with more advanced deep learn-
ing stemming from recent natural language processing research, and we
provide the first publicly available implementation of an attention model
applied to reading comprehension.

Contents
1 Problem 2

2 Architecture 3
2.1 Neural Language . 3
2.2 Softmax . 4
2.3 Recurrent Neural Networks 4
2.4 Long Short-Term Memory 5
2.5 The Deep LSTM Reader . 6
2.6 The Attentive Reader . 7

3 Training algorithm 9
3.1 RMSProp . 10
3.2 AdaDelta . 10
3.3 Regularization . 10

4 Experiments 11

5 Conclusion 12

1

mailto:alex.auvolat@ens.fr
mailto:thomas.mesnard@ens.fr
mailto:esimon@esimon.eu

1 Problem
We became interested in the question answering problem in the scope

of a Kaggle competition: The Allen AI Science Challenge. In this com-
petition we are given a dataset of multiple choice questions and answers
from a standardized 8th grade1 science exam. Two examples of question
which could have been found in the dataset2 are:

Which of the following is an example of a physical change
but not a chemical change?
A – A log gives off heat and light as it burns.
B – A tree stores energy from the Sun in its fruit.
C – A penny lost in the grass slowly changes color.
D – A water pipe freezes and cracks on a cold night.

Lichens are symbiotic organisms made of green algae and
fungi. What do the green algae supply to the fungi in this
symbiotic relationship?
A – carbon dioxide
B – food
C – protection
D – water

Our approach to solve this problem, is two folds: first we starts by
doing a search of the question on Wikipedia to select an article likely
to contain the answer we are looking for, then we apply a reading com-
prehension technique recently introduced in [11] which parses the selected
article and ranks the possible answers accordingly. In the remaining of the
report, we will mostly focus on the deep learning model used for reading
comprehension.

Reading comprehension can be seen as a supervised learning task with
two inputs: given a document d and a question q we want to model the
conditional probability p(a|d, q) of the possible answers a. Since we want
to apply deep learning to this problem, we need large amount of data.
Sadly, the lack of big dataset was a major limitation of previous works,
as an example, the recently introduced Memory Networks [10] were first
trained and evaluated on a synthetic dataset.

In [11], the authors propose a novel strategy to generate a large dataset
of triplet (d, q, a) from news article. On the CNN website, news articles are
accompanied by "story highlights", a bullet point list of small sentences
summarising the article. These summaries are not important extract from
the article, but actual abstractive rewriting of information contained in
the article. For our problem, the question–answer pairs of the dataset were
generated from these summaries by transforming them into Cloze [20] style
questions: one of the entities found in the summary is hid and we ask the
question of finding it. By following this strategy we were able to extract
a 2.5Go dataset of 387329 triplets, which should be enough to train our
models satisfactorily.

With this model, our goal is to comprehend the given document. How-
ever, as it is, the model will learn world information during training, for

1In a normal curriculum, students in 8th grade are 13 to 14 years old.
2Because of license restrictions, we can’t reproduce questions from the actual dataset in

this report.

2

Original Version Anonymised Version
Lee Min-bok didn’t laugh once when
he watched "The Interview" the
North Korea defector calls the Holly-
wood comedy "vulgar" admitting he
couldn’t even watch the whole film.
Yet he is still sending thousands of
copies across the border from South
Korea to North Korea in balloons,
determined his people will see the
movie in which the leader Kim is as-
sassinated on screen. . .

@entity0 didn’t laugh once when
he watched "@entity4" the @entity6
defector calls the @entity8 comedy
"vulgar" admitting he couldn’t even
watch the whole film. Yet he is still
sending thousands of copies across
the border from @entity2 to @en-
tity6 in balloons, determined his peo-
ple will see the movie in which the
leader @entity15 is assassinated on
screen. . .

Lee Min-bok says he finds the movie
vulgar, but sends it anyway

@entity0 says he finds the movie vul-
gar, but sends it anyway

Figure 1: Example of anonymisation of the CNN article "Defector sends thou-
sands of ’The Interview’ DVDs to North Korea".

example if the model encounter the question "which country ran a nu-
clear test last month?", it might have learned that North Korea is the
usual culprit and does not even need to parse the document to answer.
To prevent this potentially harmful process, we anonymise the documents
and questions. An example of anonymisation is provided in figure 1, we
do not want the model to learn that Lee Min-bok finds the movie vulgar,
we want it to be able to extract it from the document irregardless of the
name of the person or its sentiment about the movie. Furthermore, the
entities are randomly shuffled during training, so the model will see the
anonymised version of figure 1 with a random permutation of its entities.

2 Architecture
Deep learning is an approach born in the 2000s with [5] which revamped

neural networks. Neural networks are powerful predictors, by composing
alternatively linear and non-linear operators they offer universal approxi-
mation [8] but they were often difficult to train. Deep learning developed
techniques in order to train networks composing a high number of non-
linearity.

In this section we present the basic bricks from which our models were
built and how we composed them together in order to model p(a|d, q).

2.1 Neural Language
Our problem involve a lot of text processing, however neural networks

need to take distributed representation as input. A distributed represen-
tation is a many-to-many relationship between two types of representation
(such as words and neurons). Each word is represented by many neurons.
Each neuron participates in the representation of many words.

For natural language processing, the first time distributed representa-
tions were used somewhat successfully was in the neural language model
introduced in 2003 by [22]. The idea is to embed words in a vector space,

3

that is, to each word v we associate an embedding L(v) which is a real
valued vector of fixed dimension.

In order to do this, we have a lookup table of size |V | × d where |V |
is the size of the vocabulary and d the size of the embeddings. The i-th
word of the vocabulary is represented by the i-th row of the matrix.

We can also see this as a normal neural network layer where we rep-
resent the input word as a one-hot vector (a binary vector where a single
value is set to one), taking the dot product with the weight matrix is then
equivalent to taking the i-th row of the matrix.

There are several ways to train the embedding matrix [17], but in our
models it is simply learned as an additional parameter together with the
rest of the model. The representation learned by the embedding matrix
has been shown [14] to capture semantic information in an interesting
way and this technique is now used in most deep learning application in
natural language processing.

2.2 Softmax
Our model not only read words at its input, but also outputs words,

thus we need a distributed representation at the end of the network too.
When predicting a class (e.g. predicting one word), we can output as
many values as the number of classes (e.g. |V | values, one for each word)
thus assigning a score to each class. Predicting the correct class would
be equivalent to taking the maximum over these values. However, the
max function is not differentiable, to circumvent this problem, we use the
softmax function defined as follow:

softmax(x)i =
exi∑
j e
xj

The exponential is used to make all values positives, the denominator then
normalize the values such that

∑
i softmax(x)i = 1.

The output of the softmax can be interpreted as a probability dis-
tribution, for example, when predicting the next word in sentence, the
softmax assign a probability to each word in the vocabulary. The nor-
malizer, force the computation of exi for all i, which makes this function
computationally expensive.

All of our models end with a softmax over the set of anonymised en-
tities, which are taken to be the set of possible answers.

2.3 Recurrent Neural Networks
The word embedding technique enable us to represent words and take

them as input, but our problem involve the processing of whole sentences
and pages. Since [13], the dominant approach used in natural language
processing to process variable-length sequences has been to use recurrent
neural networks. A RNN is a neural network with a loop that carries a
hidden state through several time steps as illustrated by figure 2, it can
be summarized by the equation:

ht+1 = tanh(Wxt + Uht + b)

Looking at figure 2a, this might seems like a very shallow network,
however once unrolled as in figure 2b, we can see that these networks
actually compose a very high number of non-linearity thus being dubbed
the deepest of all networks. Composing a high number of non-linearity

4

x

h

(a) Illustration of a RNN as a recurrent
loop.

x1 x2 xT

h1 h2 hT

. . .

(b) Illustration of a RNN unrolled in
time.

Figure 2: Schematic representation of recurrent neural network cells. Both
figures represent the same thing, but the one on the right make the temporal
relations explicit.

cause the gradient to dissipate, this is known as the vanishing gradient
problem [21], the learning algorithm become unable to assign credit and
the parameter can not be updated correctly. This makes RNN very diffi-
cult to train, especially when the sequence being processed is as long as
it is in our problem.

2.4 Long Short-Term Memory
Long Short-Term Memory [18] are a type of RNN often used when

processing long sequences since they are less susceptible to the vanishing
gradient problem. LSTM redefine the recurrence of RNN by adding mul-
tiplicative gates as illustrated by figure 3, it is governed by the following
set of equation3:

x′t = [xt, ht−1] Recurrent input
c̃t = tanh(Wcx

′
t + bc) Cell candidate

it = σ(Wix
′
t + Uict−1 + bi) Input gate

ft = σ(Wfx
′
t + Ufct−1 + bf) Forget gate

ct = itc̃t + ftct−1 New cell
ot = σ(Wox

′
t + Uoct + bo) Output gate

ht = ot tanh(ct) Hidden layer output

One peculiarity of LSTM, is the presence of multiple gates i, f , and
o, they are used as mask or mixing factor in the unit. LSTM units are
interpreted as having an internal cell memory ct which is an additional
(internal) state alongside ht and is used as input of the cell alongside xt
and ht−1. When computing its activation, we first compute a cell can-
didate c̃t which is the potential successor to ct. Then, the multiplicative
gates come into play, the cell ct is partially updated with a mix of ct−1

and c̃t controlled by the input and forget gates it and ft. Finally, the
output of the unit is masked by the output gate ot4.

It has been theorized [7] that the gates are what make LSTM so pow-
erful, the multiplications allow the model to learn to control the flow of
information in the unit thus counteracting the vanishing gradient problem.

3σ is the sigmoid function: σ(x) = 1
1+e−x

4Note that the output gate ot has its value computed from the new cell value ct instead of
ct−1 as it is the case for it and ft.

5

xt, ht−1 htct

Cell

Input Gate Output Gate

Forget Gate

it ot

ft LSTM

Figure 3: Long Short-Term Memory. The input x is fed to a tanh layer to
produce a candidate value for the cell. The cell c is partially updated with the
candidate, controlled by the input and forget gates i and f . The value of the
cell is then fed to a tanh and masked by the output gate o. All gates use a
sigmoid activation function in order to output a value between 0 and 1. The
input and forget gate are fed the previous value of the cell ct−1, whereas the
output gate receive the new value ct.

2.5 The Deep LSTM Reader
The first model we applied to the reading comprehension task is the Deep
LSTM Reader presented in figure 4. This model runs a LSTM over a
concatenation of the document and the question separated by a marker
(<SEP>), this is a (cheap) way to enable interaction between the document
and the question.

Even though LSTMs enable longer sequences to be processed, the path
the gradient must go through between the cost at the output and the first
word of the document is quite long, in order to cut down this distance we
use a bidirectional LSTM, that is, we run the LSTM in both direction:
the first one read the words in the natural order, the second one in the
reverse order. This also enable the LSTM to select information in the
document depending on the question it reads, indeed the forward LSTM
can only selectively parse the question with its knowledge of the document
(but not the opposite), thus it must entirely sum up the document into
a single fixed-size vector not knowing which part of the document the
question will be about5.

Furthermore, in order to have a more powerful model, we stacked two
bidirectional LSTMs on top of each other thus making the model deeper.
To train efficiently this model, we added skip connections, that is we
connected the second recursive layer directly to the input. Often used
with deep RNNs, these additional connections enable a smoother training
by adding a shorter path between the input and the second LSTM layer.

After the question and the document have been encoded with LSTMs,

5The opposite problem exists for the reverse LSTM, a more satisfying solution will be given
with our second model.

6

@entity42 condemned the test <SEP> Who condemned the test

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

Softmax

@entity42

Figure 4: The Deep LSTM Reader: the concatenation document–question is
parsed in both direction producing a first representation of the input pair. A
second bidirectional LSTM is then run over this representation and the raw
input to produce a higher level representation. The last states of each LSTM is
then fed to a MLP with a softmax to produce the model’s prediction.

we use the concatenation of the last hidden state of each LSTMs as a
representation for the document–question pair and feed it to a 2-layers
MLP. The activation function of the first layer is the usual tanh, the one
of the last layer is the previously mentioned softmax function over the set
of anonymised entities, giving us the prediction of the model.

2.6 The Attentive Reader
Even though bidirectional LSTMs enable us to process long sequences,

the path between the middle of the document and the output is still quite
long. Furthermore, at each time step LSTMs embed a variable-length
sequence into a fixed-dimensional space this cause an unavoidable loss of
information. In order to prevent this information loss, we must move away
from model keeping a fixed-size vector at each time step. The next model
we tried was inspired by recent advances in machine translation [3] and
vision [12]: the Attentive Reader.

Similarly to the Deep LSTM Reader, the Attentive Reader start by
encoding the input document and context, except that it encodes them
separately (the interaction between the two being handled latter in the
model). Once again, the encoding is done by a stack of bidirectional
LSTMs. The difference is that, this time, we consider the whole sequence
of hidden states of the document to be its representation (instead of look-
ing at the final states only).

In order to compile this variable-length representation into a fixed-size
vector for our output MLP, we use the so-called attention mechanism.
The Attentive Reader is illustrated by figure 5 and can be summed up by

7

@entity42 condemned the test Who condemned the test

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

rq

rd

∑

Softmax

@entity42

Figure 5: The Attentive Reader. For readability, the attention mechanism
was only detailed for the last word of the document, and the softmax over
the energies e was omitted. The document and question are first preprocessed
by a stack of bidirectional LSTM in a similar way of what was done by the
Deep LSTM Reader. For each word–context representation of the document,
an energy is computed by a tanh layer which also has access to the question
representation. The document representation is built as a sum of each word–
context representation weighted by its energy. The prediction is built from the
document and question representations as before.

8

the following set of equation:

d−→h 1
t = LSTM(dt,

d−→h 1
t−1) 1st forward LSTM processing of the document

d←−h 1
t = LSTM(dt,

d←−h 1
t+1) 1st backward LSTM processing of the document

d−→h 2
t = LSTM(dt,

d−→h 1
t ,
d−→h 2

t−1) 2nd forward LSTM processing of the document
. . . = . . .

mt = [d
−→
h 1
t ,
d←−h 1

t ,
d−→h 2

t ,
d←−h 2

t] Representation of the t-th word of the document.
rq = [q

−→
h 1
T ,

q←−h 1
1,
q−→h 2

T ,
q←−h 2

1] Representation of the question
et = We tanh(Wmmt +Wrrq + ba) + be Energy of each document word
a = softmax(e) Weight of each document word
rd =

∑T
t atmt Representation of the whole document

y = softmax(Wdrd +Wqrq + by) Prediction

Note that the question is handled as before since it is often short, the
LSTMs handle it correctly and we can use it to control the attention on
the document.

The interpretation of the attention mechanism is as follow: It gives an
energy et to each word in the document, this energy is computed given
the word and the context in which the word is used mt as well as the
question being asked rq. Then, this energy is passed through a softmax
giving a normalized weights to each word in the document: the attention
at. The fixed-size representation of the document rd is then computed as
the weighted sum of each word–context representation. The prediction
y is once again obtained by a softmax over the set of entities given the
representation of the document and the question.

3 Training algorithm
Our models were trained with variants of the stochastic gradient descent

algorithm, first of all, let’s write the equation of the classic SGD for a
parameter θ as follow:

gθt =
∂ cost(at, dt, qt, θt)

∂θt

θt ← θt−1 − λgθt
Like previously said, all our models end with a softmax over the set of

entities. Therefore, we are using the standard categorical cross entropy as
a cost function, which, following a softmax, is equivalent to the negative
log likelihood. Let a be the answers, d the documents, and q the questions:

cost(a, d, q, θt) = −
∑
i

1{a=i} log (modelθ(d, q))i = − log (modelθ(d, q))a

A first (and classic) improvement over SGD is the use of momen-
tum [16]. For each parameter θ, a velocity vθ accumulates the gradients
over time with a decay rate α. When updating a parameter, we use the
velocity instead of using the raw gradient:

vtθ ← αvt−1
θ + λgθt

θt ← θt−1 − vtθ
Momentum allows to speed up the training when succeeding gradients

are in the same direction, and slow it down when they are in opposite
directions.

9

3.1 RMSProp
RMSProp[19] is an algorithm that utilizes the magnitude of recent gra-

dients to normalize the current one. The normalized gradients are then
used with momentum as previous.

M t
θ ← γM t−1

θ + (1− γ)g2θt

vtθ ← αvt−1
θ +

λ√
M t
θ

gθt

θt ← θt−1 − vtθ
The name comes from the fact that the gradient is normalized by

something akin to the Root Mean Square of the previous gradients. This
normalization factor can be seen as the learning rate, thus RMSProp is
an adaptive learning rate technique.

After experimentation, we found that RMSProp was what functioned
best with our models, thus most of them were trained with it.

3.2 AdaDelta
For some model, we found that training initially with RMSProp then

fine tuning by switching to AdaDelta [23] gave better results. It can be
summarized by the following set of equation:

M t
θ ← γM t−1

θ + (1− γ)g2θt

∆t
θ ← −

√
Ot−1
θ + ε√
M t
θ + ε

gθt

Otθ ← γOt−1
θ + (1− γ)∆t

θ
2

θt ← θt−1 + ∆t
θ

If we reason in term of unit, the derivative gθt can be seen as having
unit 1/ unit of θ, thus SGD and momentum are adding two quantities with
different units, AdaDelta tries to palliate to this by dividing by a gradient
normalizer and multiplying by an update normalizer, thus having ∆θ in
"the good unit". Again, the goal is to protect against sudden change
in the gradient by dividing the update by an average of past gradients
(note that the numerator lag behind by a time step). A nice property
of AdaDelta is that it is quite insensitive to hyperparameters setting, the
algorithm will quickly converge for most values.

3.3 Regularization
The number of parameters of our models is quite high, in order to train

them satisfactorily, we need to regularize them.
The use of a validation set as an early stopper indicator can be con-

sidered a basic form of regularization. Indeed, before implementing other
forms of regularization this metric allowed us to stop the training before
overfitting. Figure 6 shows an example of convergence plot for one of
our early model that suffered from a lack of regularization, clearly early
stopping is not enough.

The other form of regularization we used is dropout [6]. In dropout,
the activation of neurons are randomly dropped and set to zeros with a

10

Figure 6: Negative log likelihood as a function of the number of iterations. On
the left is the convergence for one of our early model (a single layer bidirectional
LSTM) not using dropout or entity shuffling6. The model is clearly overfitting:
the training cost continue to decrease while the validation cost increase. On the
right is the convergence for our Attentive Reader which despite having more
parameters, is less prone to overfitting thanks to the use of dropout and entity
shuffling.

probability p. This has the effect of preventing a neuron from completely
depending on the value of another neuron ("co-adaptation").

During training, a node is sometimes dropped out by the multiplication
by a binomial, during testing, since there are more node (node are not
dropped out at test time), we need to multiply each node by p to have a
similarly valued input (which is equivalent to dividing them by p during
training).

Dropout has been shown to be a cheap alternative to model ensem-
bling, indeed, each possible subnetwork can be seen as a model in an
ensemble.

Lastly, we tried various form of noise injection, either in the weight
matrices [15] or in the activations [2]. Noise have been known to some-
time dramatically increase generalization, however we did not observe any
improvement.

After experimentation, we observed that dropout performed very well,
we decided to combine it with early stopping only.

4 Experiments
Our model is publicly available on Github at:

https://github.com/ejls/Deep-Question-Answering

The code was written in Python with the help of Theano [4, 9], this li-
brary allows us to define a computation graph for our model and then

6As presented in the first section, the document and question are anonymised, during
training the anonymised entities are shuffled, further preventing the network from overfitting
the training set.

11

https://github.com/ejls/Deep-Question-Answering

provide tools to perform automatic differentiation on it, thus greatly re-
ducing the quantity of code to be written and the risk of mistake in the
backpropagation routine. Furthermore, Theano enable us to use GPUs
which greatly increased the speed of our algorithm. This is non-negligible
since even with Nvidia Titan GPUs, training took around 4 days. We
also used the blocks and fuel library [1] developed at MILA (ex-LISA) in
Montreal alongside Theano, these libraries propose basic building blocks
for deep learning model, once again making our work easier and allowing
us to concentrate on model selection and hyperparameter tunning.

We extracted from the CNN website a 2.5Go dataset of 387329 triplets.
For evaluation purpose, we divided this dataset into the three usual train,
valid and test sets as follow:

Train Valid Test
380207 3924 3198

We tried several different hyperparameters settings, in the end the one
with which we obtained the best performances were tuned as follow: For
both models, the word embeddings were of dimension 200. For the Deep
LSTM Reader, the size of the LSTM cells was 128 and the size of the
second output MLP layer was 20. For the Attentive Reader, the size of
the LSTM cells was 256 and the size of the second attention MLP layer
was 100. The batch were of size 32 and were sorted by group of 20 into
documents of increasing length. The reason for sorting the documents
is that when training on a batch of variable-length sequences, the matrix
processed on GPU has the same width as the longest sequence in the batch.
Thus, by sorting sequences by length on a small number of consecutive
batches, the gradient is not much affected but the training speed improve.

A convergence plot of the Attentive Reader is given in figure 6. In the
end the models compared as follow:

Model Validation error rate Test error rate
Deep LSTM Reader 40.63% 38.93%
Attentive Reader 40.24% 38.38%

Despite being quite larger and slower to train, the Attentive Reader
didn’t performed much better. Similar results were already reported
in [11], so this was to be expected. Nonetheless, an error rate under 40%
means that our models were able to answer over 60% of the questions in
the test set by reading the corresponding news article.

The additional computational expense of the attentive reader could be
justified by the fact that it also produces an attention map on the docu-
ment as presented in figure 7. In numerous fields, deep learning and neural
networks are not used because they usually do not offer an explanatory
output alongside their prediction. With attention mechanisms, it is a bit
easier for us to give an explanation as to why our models generated a
given output.

5 Conclusion
We obtained results which are at a state-of-start level on the reading

comprehension task and provide the first publicly available implementa-
tion of an attention model for it. We also showed that on this task, the way

12

Document:

Gov. @entity0 has long made it clear that he holds sharp disdain
for @entity3. In fact, he finds it so unappealing, he’d rather drown
himself than serve in @entity6. Speaking at the @entity12 @entity11
conference on saturday, the second term @entity8 governor empha-
sized that he never plans on running for office in @entity12 again.
Most think @entity6 is worst in their lifetime "the only job left for me
to run for is @entity17, and let me just say this : I would rather die
than be in the @entity17. Okay? I would be bored to death," @entity0,
who’s considering a 2016 presidential bid, said to laughs from the au-
dience." Can you imagine me bangin’ around that chamber with 99
other people? Asking for a motion on the amendment in the subcom-
mittee? Forget it. It would be over, everybody. You’d watch me just
walk out and walk right into the @entity31 and drown. That’d be
it." @entity0 says again he’d love to run the @entity35 @entity0 gets
compassionate as he eyes 2016

Question:

Gov. @placeholder says he’s not running for office again in @en-
tity12.

Answer: @entity0
Anonymisation table:
@entity0 Chris Christie @entity12 New Jersey
@entity3 Washington @entity17 U.S. Senate
@entity6 Congress @entity31 Potomac River
@entity8 Republican @entity35 Mets
@entity11 NAACP

Figure 7: Visualization of the attention map on a document from our training
set. The intensity of the red highlight is proportional to the attention weight,
that is the weight that this word and its context was given in the representation
of the document as a whole.

13

we implemented the attention mechanism doesn’t produce a much better
result than a deep stack of bidirectional LSTMs, however it provides an
interesting explanatory output.

Further work could focus on a way to include world data in these
models, indeed deep question answering models either have access to world
data and rely to much on it, or try to ignore it completely as it is with
the models we presented in this report.

References
[1] Bart van Merriënboer, Dzmitry Bahdanau, Vincent Dumoulin,

Dmitriy Serdyuk, David Warde-Farley, Jan Chorowski, and Yoshua
Bengio. Blocks and Fuel: Frameworks for deep learning. ArXiv e-
prints, June 2015.

[2] Chris M Bishop. Training with noise is equivalent to tikhonov regu-
larization. Neural computation, 7(1):108–116, 1995.

[3] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural
machine translation by jointly learning to align and translate. arXiv
preprint arXiv:1409.0473, abs/1409.0473, 2014.

[4] Frédéric Bastien, Pascal Lamblin, Razvan Pascanu, James Bergstra,
Ian Goodfellow, Arnaud Bergeron, Nicolas Bouchard, and Yoshua
Bengio. Theano: new features and speed improvements. Deep Learn-
ing and Unsupervised Feature Learning NIPS 2012 Workshop, 2012.

[5] Geoffrey E Hinton, Simon Osindero, and Yee-Whye Teh. A fast learn-
ing algorithm for deep belief nets. Neural computation, 18(7):1527–
1554, 2006.

[6] Hinton E Geoffrey, Nitish Srivastava, Alex Krizhevsky, Ilya
Sutskever, and Ruslan R Salakhutdinov. Improving neural networks
by preventing co-adaptation of feature detectors. arXiv preprint
arXiv:1207.0580, 2012.

[7] Sepp Hochreiter. The vanishing gradient problem during learning
recurrent neural nets and problem solutions. International Journal
of Uncertainty, Fuzziness and Knowledge-Based Systems, 6(02):107–
116, 1998.

[8] Kurt Hornik. Approximation capabilities of multilayer feedforward
networks. Neural networks, 4(2):251–257, 1991.

[9] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lam-
blin, Razvan Pascanu, Guillaume Desjardins, Joseph Turian, David
Warde-Farley, and Yoshua Bengio. Theano: a CPU and GPU math
expression compiler. In Proceedings of the Python for Scientific Com-
puting Conference (SciPy), June 2010. Oral Presentation.

[10] Jason Weston, Sumit Chopra, and Antoine Bordes. Memory net-
works. arXiv preprint arXiv:1410.3916, 2014.

[11] Karl Moritz Hermann, Tomas Kocisky, Edward Grefenstette, Lasse
Espeholt, Will Kay, Mustafa Suleyman, and Phil Blunsom. Teaching
machines to read and comprehend. In Advances in Neural Informa-
tion Processing Systems, pages 1684–1692, 2015.

[12] Kelvin Xu, Jimmy Ba, Ryan Kiros, Aaron Courville, Ruslan
Salakhutdinov, Richard Zemel, and Yoshua Bengio. Show, attend and
tell: Neural image caption generation with visual attention. arXiv
preprint arXiv:1502.03044, 2015.

14

[13] Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Fethi
Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase
representations using RNN encoder-decoder for statistical machine
translation. arXiv preprint arXiv:1406.1078, 2014.

[14] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff
Dean. Distributed representations of words and phrases and their
compositionality. In Advances in neural information processing sys-
tems, pages 3111–3119, 2013.

[15] Alan F Murray and Peter J Edwards. Enhanced mlp performance and
fault tolerance resulting from synaptic weight noise during training.
Neural Networks, IEEE Transactions on, 5(5):792–802, 1994.

[16] Boris Teodorovich Polyak. Some methods of speeding up the conver-
gence of iteration methods. USSR Computational Mathematics and
Mathematical Physics, 4(5):1–17, 1964.

[17] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Ko-
ray Kavukcuoglu, and Pavel Kuksa. Natural language processing
(almost) from scratch. The Journal of Machine Learning Research,
12:2493–2537, 2011.

[18] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

[19] T. Tieleman and G. Hinton. Lecture 6.5—RmsProp: Divide the
gradient by a running average of its recent magnitude. COURSERA:
Neural Networks for Machine Learning, 2012.

[20] Wilson L Taylor. Cloze procedure: a new tool for measuring read-
ability. Journalism and Mass Communication Quarterly, 30(4):415,
1953.

[21] Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-
term dependencies with gradient descent is difficult. Neural Networks,
IEEE Transactions on, 5(2):157–166, 1994.

[22] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian
Janvin. A neural probabilistic language model. The Journal of Ma-
chine Learning Research, 3:1137–1155, 2003.

[23] Matthew D. Zeiler. ADADELTA: an adaptive learning rate method.
arXiv preprint arXiv:1212.5701, 2012.

15

	Problem
	Architecture
	Neural Language
	Softmax
	Recurrent Neural Networks
	Long Short-Term Memory
	The Deep LSTM Reader
	The Attentive Reader

	Training algorithm
	RMSProp
	AdaDelta
	Regularization

	Experiments
	Conclusion

